

1) $3\frac{1}{3} \cdot 2\frac{7}{10} =$ 2) $1\frac{1}{4} \cdot 50 =$

Modeling Dividing Fractions

1) How many "twos" would fit into this model?

Write a math problem that represents this: _____

2) How many "threes" would fit into this model?

Modeling Dividing Fractions

3) How many $\frac{1}{2}$'s would fit into this model?

Write a math problem that represents this: _____

4) How many
$$\frac{1}{3}$$
 's would fit into this model?

Modeling Dividing Fractions 1 1 1 1 1 1 1 1 15) How many $\frac{1}{4}$'s would fit into this model?

Write a math problem that represents this: _____

6) How many
$$\frac{2}{3}$$
's would fit into this model?

Modeling Dividing Fractions

7) How many $\frac{3}{4}$'s would fit into this model?

Write the reciprocal of the following:

1) $\frac{7}{4} \div \frac{1}{3}$

 $2) \quad \frac{1}{5} \div \frac{2}{3}$

3) $\frac{5}{6} \div \frac{7}{9}$

Real-Life Application

- 6) How many $\frac{2}{3}$ cup servings are there in
 - a 12 cup box of cereal?

Order of Operations

7)
$$\frac{3}{8} + \frac{5}{6} \div 5$$

Order of Operations

8)
$$\frac{3}{8} \div \frac{3}{4} - \frac{1}{6}$$

Practice 1) $\frac{2}{5} \div \frac{3}{5} = \frac{2}{5} \times \frac{5}{3} = \frac{2}{3}$ 6) $\frac{3}{8} \div \frac{1}{2} =$ 2) $\frac{5}{21} \div \frac{3}{7} =$ 7) $\frac{2}{3} \div \frac{5}{6} =$ 3) $\frac{3}{10} \div \frac{2}{5} =$ 8) $\frac{6}{13} \div \frac{3}{4} =$ 4) $\frac{5}{7} \div \frac{10}{11} =$ 9) $\frac{3}{14} \div \frac{2}{7} =$ 5) $\frac{7}{12} \div \frac{7}{8} =$ 10) $\frac{8}{15} \div \frac{4}{5} =$